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Understanding the in#uence of the control system on the performance of vibratory
gyroscopes is important during the design of such devices. The ability of the control system
to reduce the e!ects of resonator imperfections, on the gyroscope performance, was
investigated. The analysis of the control problem presented begins with equations of motion
describing the dynamics of a resonator including frequency and damping imperfections.
These equations were transformed to slowly varying parameters and averaged. The
equations of motion, in this form, provide many insights into the dynamics of the resonator
and suggest the control system functions required to e!ectively operate the resonator as an
angular rate sensor. A phase-locked loop-based control system was designed, analyzed and
implemented. The control system drives the resonator at resonance to a constant amplitude
and nulls the rotation-induced vibrations. It was shown analytically that the "rst order
e!ects of frequency imperfections can be eliminated by the control system. The e!ect of
damping anisotropy is not reduced by the control system and this is expected to be the major
source of error in the closed-loop system. Experimental measurements, of a piezoelectrically
actuated and sensed resonator, over a temperature range of 603C, showed that variation of
the zero-rate o!set was decreased by an order of magnitude by the force-to-rebalance
control. The analytical and experimental results present a convincing argument for the use
of force-to-rebalance control in vibratory gyroscopes.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The advantages o!ered by vibratory gyroscopes have attracted a number of companies and
researchers to this "eld. While one company has developed and produced the very
high-performance hemisphere resonator gyro (HRG) [1, 2] the promise of low-cost, small
and rugged sensors encouraged the development of several designs aimed at commercial
applications. Recent e!orts to develop micromachined designs were reviewed by Yazdi
et al. [3].
The geometries used for the vibrating structure or resonator include hemispheres [1, 2]

strings [4], beams [5, 6], tuning forks [7}9], rings [10}12], cylinders [13}15] and discs
[16, 17]. These structures are excited and sensed by methods including electromagnetics,
electrostatics and piezoelectricity.
Generally, one vibration mode of the resonator is excited at the resonant frequency.

When the resonator is rotated, energy is coupled from this mode into a second vibration
mode. This Coriolis coupling causes a response in the second vibration mode which is used
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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to measure the applied rotation rate. The response of this second mode is often controlled
by a form of feedback control. This control is usually motivated by the need to increase the
bandwidth of the gyroscope.
The performance of vibratory gyroscopes is limited by the e!ects of imperfections, in the

resonator, which may be dependent on both time and temperature. The e!ects of
imperfections in vibratory gyroscopes have been studied by various researchers [15, 18}21].
These studies focus on the e!ects of imperfections on the resonator dynamics and do not
consider the design of the control system speci"cally to reduce the e!ects of imperfections.
Numerous examples of micromachined vibratory gyroscope resonator developments are
available in the literature [3]. Often the performance of these resonators is measured in
simple open-loop tests which may not re#ect the true potential of these devices. In this
paper, the ability of the control system to suppress the e!ects of resonator imperfections is
demonstrated analytically and experimentally.
The time-averaged equations of motion for a general resonator with mass/sti!ness and

damping imperfections are derived in the most natural form for analysis of angular rate
sensor operation. The e!ects of imperfections may be understood qualitatively from these
equations and the ability of control system functions to suppress the e!ects of certain
imperfections is easily observed. Experimental results indicate the relative magnitude of
imperfection e!ects which could be suppressed compared to those that could not be
controlled, for a particular resonator.

2. MODEL OF RESONATOR DYNAMICS

The model of the resonator is required to describe the dynamics of the two modes of
vibration and the Coriolis coupling between them. The resonators used are generally very
lightly damped and the contribution of modes other than the operating modes is ignored.

2.1. EQUATIONS OF MOTION

The equations of motion of a &&generic vibratory gyro'' resonator are presented in
equation (1). These equations describe the dynamics of an imperfect rotating axisymmetric
shell resonator. Mass and sti!ness imperfections cause a frequency di!erence between the
two modes and also locate the modes relative to the shell. In the model the position of the
lower frequency axis is speci"ed and it is assumed that the two mode shapes are orthogonal.
The damping of the resonator is described by two time constants representing an axis of
minimum damping and an axis of maximum damping:

xK!2nk�yR #(2/�#� (1/�)cos 2n��)xR #� (1/�)sin 2n��yR

#(��!��� cos 2n��)x!��� sin 2n��y"f
�
,

yK#2nk�xR #� (1/�)sin 2n��xR #(2/�!� (1/�)cos 2n��)yR

!��� sin 2n��x#(��#��� cos 2n��)y"f
�
. (1)

Equation (1) is the same as that presented by Lynch [22] except that the factor n describing
the number of circumferential waves has been included while the �Q (angular acceleration)
and �� (centrifugal acceleration) terms have been omitted.



Figure 1. Vibration pattern representation and axis de"nitions.
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The particular case of an axisymmetric shell resonator operating in the n"2 modes is
shown in Figure 1. Coriolis coupling between these two modes occurs when a rotation rate
is applied around the axis of the resonator.
The equations of motion can be written in terms of the elements of a damping matrix and

a &&natural frequency'' matrix to simplify the following manipulations. Equation (2) is
applicable to resonators of other geometries which have two modes coupled by Coriolis
e!ects:

xK!g�yR #c
��
xR #c

��
yR #k

��
x#k

��
y"f

�
,

yK#g�xR #c
��
xR #c

��
yR #k

��
x#k

��
y"f

�
. (2)

2.2. AVERAGED EQUATIONS OF MOTION

Averaged equations of motion, describing the dynamics of a resonator including the
e!ects of control loops, were derived by Lynch [22]. Use was made of &&canonical'' variables,
which are invarient under rotation of the picko! axis set around the axis of the resonator.
These variables are necessary for describing the operation of the HRG as an angle sensor.
These sophisticated equations may then be applied to the simpler case of an angular rate
sensor with force-to-rebalance control. In this section, simple averaged equations of motion,
for the resonator operating as an angular rate sensor are derived directly. The variables
used in this analysis retain their physical meaning and provide good insight into the
problem.
The dynamics of the resonator may be more e$ciently described by transforming the

system of two second order equations into a system of four "rst order equations in slowly
varying parameters. The following transformation was used to transform the equations in
the rapidly varying parameters, x and y into equations in the slowly varying parameters,X

�
,

X
�
, >

�
and >

�
:

x"X
�
sin �t#X

�
cos �t, y">

�
sin �t#>

�
cos �t. (3)

After the manipulations and averaging, described in Appendix A, a system of four
"rst-order equations in the slowly varying parameters is obtained. It was assumed that the
resonator is lightly damped and has only small frequency and damping imperfections. The
assumption is valid for resonators designed with two modes of vibration having nominally
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the same frequency:
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In the averaging process a "rst-order approximation was made when it was assumed that
the slowly varying parameters could be considered constant over one period of
oscillation [23].
The form of this system of equations appears similar to state-space equations but these

equations include frequency and the frequency-squared terms which are not present in
a state-space system. This means that state-space methods of analyzing and designing
control systems cannot be applied to this system. During operation the resonator is forced
to vibrate at resonance at a constant amplitude. This limit cycle can only exist in
a non-linear system which makes analysis of the control system di$cult. Because the
averaged equations above are in the slowly varying parameters it is possible to use time
integration to simulate the operation of the closed-loop system. The averaged equations
also provide some useful insights into the behaviour of the resonator which aid in the
control system design.

3. CONTROL SYSTEM FUNCTIONS

In this section, the averaged equations of motion are used to motivate the control system
functions required for the resonator to operate as an angular rate sensor. The equations of
motion without imperfections are used to develop the control functions and the
implementation of these functions. The e!ects of resonator imperfections, on the
performance of the controlled system, are then analyzed in section 4.
The averaged equations of motion are simpli"ed by the omission of imperfections:
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It is evident that in the perfect resonator the x and y vibration patterns are only coupled
when an angular rotation rate (�) is applied. One makes use of this e!ect when using the
resonator as an angular rotation sensor or gyroscope. In the ideal case, the control
functionsmay be separated into those operating on the primary vibration pattern and those
operating on the secondary vibration pattern.
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3.1. CONTROL OF THE PRIMARY VIBRATION PATTERN

The equations of motion for the primary vibration pattern, in the absence of applied
rotation rate are
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The steady state response of the system is found by setting the time derivative terms to zero.

3.1.1. Frequency control

If one applies a sinusoidal excitation f
�
"sin �t (F

��
"1 and F

��
"0) at the frequency

�"�k
��
, then the coupling between X

�
and X

�
is zero and the response will be

X
�
"!F

��
/�c

��
, X

�
"0. In other words, if one excites the structure at resonance the

response will be 903 out of phase with the excitation. At frequencies of excitation other than
the resonant frequency the equations are coupled and there will be sine and cosine response
components. The damping, c, determines the amplitude of response at steady state and also
the speed with which this amplitude changes. Note that in the "rst-order approximation the
presence of damping does not a!ect the resonant frequency. Neglecting this second-order
e!ect is justi"ed because vibratory gyroscope resonators are designed to have very small
damping.
The observation that there is a sine component response to a sine excitation if the

excitation frequency does not coincide with the resonant frequency of the resonator
suggests a method of controlling the frequency of excitation to follow the resonant
frequency of the resonator. The sine component of the response (X

�
) can be used as the error

signal in a phase-locked loop which drives the resonator at resonance. This phase-locked
loop consists of a sine-wave generator or voltage-controlled oscillator (VCO) which
produces a sine wave, the frequency of which is determined by the voltage applied to the
VCO. The sine wave is applied to the resonator and the response of the resonator is
demodulated by the excitation sine to produce the amplitudes of the components which are
in-phase (X

�
) and in-phase quadrature (X

�
) to the excitation signal. This demodulation can

be achieved by a lock-in ampli"er (LIA) which is a laboratory instrument speci"cally
designed for this task. The response component X

�
which is in-phase with the excitation is

used as an error signal which is "ltered by a proportional}integral controller before being
fed back to control the frequency of the excitation signal generated by the VCO. This
control loop is illustrated in Figure 2.

3.1.2. Amplitude control

The amplitude of response of the primary vibration pattern, when excited at resonance, is
determined by the amplitude of the excitation and the damping in the resonator. The
Coriolis forces experienced by the secondary vibration pattern are proportional to the
product of the velocity of vibration of the primary vibration pattern and the applied
rotation rate. The second function of the control system is to maintain the amplitude of the
vibration of the primary mode at a constant value. Because the frequency control loop
ensures thatX

�
is zero, the amplitude of the primary mode is given byX

�
which is available

from the lock-in ampli"er used in the frequency control loop. The di!erence between the
actual amplitude of vibration and a set reference value forms the error signal. Once again
a proportional}integral controller is used to ensure that the steady state error is zero. The
output from the proportional}integral controller is multiplied by the excitation signal from



Figure 2. Frequency and amplitude control of primary vibration pattern by the phase-locked loop approach.
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the VCO to control the amplitude of the signal applied to excite the resonator and thus the
amplitude of the response of the resonator. The amplitude control loop is shown in
Figure 2.

3.2. CONTROL OF THE SECONDARY VIBRATION PATTERN

If one assumes that the primary vibration pattern is excited to vibrate at resonance with
constant amplitude (X

�
"0, X

�
"XM

�
) inspection of equation (5) shows that there will be

a cosine response (>
�
) in the secondary vibration pattern when a constant rotation rate is

applied. The response of the secondary vibration pattern to a step input angular rotation
rate is easily calculated:

>
�����

"!(g�XM
�
/c) (1!e�������). (7)

This open-loop response of the secondary vibration pattern gives the steady state amplitude
which determines the scale factor of the gyroscope and also provides a measure of the
response time. The open-loop bandwidth of typical resonators is usually too small for most
applications. The e!ective damping of the resonator (c) can be increased electronically by
applying velocity feedback [24]. It is also possible to null the response of the secondary
vibration pattern by applying a suitable force F

��
. The control system used to supply this

force will then determine the response time or bandwidth of the gyroscope. This method of
control is known as force-to-rebalance because a force is applied which e!ectively balances
the Coriolis force acting on the secondary vibration pattern. The rotation rate information
is stored in the signal (F

��
) required to null the response. In this scheme, the secondary mode

is not allowed to respond and the Coriolis forces experienced by the secondary mode are
balanced by the control force F

��
. This is true closed-loop operation.

When imperfections are present there will be a sine response in the secondary vibration
pattern (>

�
). Nulling the secondary vibration pattern requires that this component is also

nulled. This case will be considered in order to investigate later the e!ects of imperfections
on the gyroscope performance. The forces F

��
and F

��
required to null>

�
and>

�
, respectively,

can be formed by two proportional}integral control systems as
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Figure 3. Force-to-rebalance control loop implementation shown with the primary vibration pattern control
loops.
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It is noted that if only the proportional part of the controller is applied one is essentially
adding damping to the resonator. This would improve the bandwidth of the resonator at
the cost of a degraded signal-to-noise ratio. The use of FTR means that the Coriolis forces
acting on the secondary mode are balanced by the control forces and the position of the
standing wave pattern is maintained "xed relative to the resonator. The choice of feedback
control coe$cients determines the speed of response of the closed-loop system and hence
the bandwidth of the gyroscope. As there is no displacement or velocity of the secondary
mode, changes in the damping factor, c

��
, will also have no in#uence on the output. The

damping anisotropy, c
��
, will still have an e!ect on the output of the gyroscope and this will

be the major source of error in the closed-loop system. This implementation of
a force-to-rebalance control system is illustrated in Figure 3.

4. EFFECTS OF IMPERFECTIONS

In section 3, the control system functions were described for a perfect resonator. In this
section, the e!ects of imperfections are analyzed qualitatively, by inspection of the averaged
equations of motion, and quantitatively, by numerical solution of the non-linear equations.
The e!ects of frequency and damping imperfections on the open-loop performance are
determined. The ability of force-to-rebalance control to decrease this sensitivity to
resonator imperfections is then considered.
In certain cases it is possible to calculate the steady state response of the controlled

system but in general it was necessary to solve the non-linear equations numerically. The
control functions were expressed mathematically as di!erent sets of conditions depending
on the control functions being analyzed. For the primary mode this implies that F

��
"0;
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Conditions used during steady state solutions
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Figure 4. Zero-rate o!set of a 15 kHz resonator with a 1 Hz frequency imperfection*open loop.
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X
�
"0; X

�
"XM

�
and the operating frequency, �, and the required drive amplitude, F

��
is

calculated. The conditions applied to the secondary mode depend on the control loop
selected. The prescribed conditions and the parameters which were calculated in each case
are listed in Table 1.

4.1. OPEN-LOOP OPERATION

4.1.1. Frequency imperfections

The e!ect of frequency split (mass/sti!ness anisotropy) was investigated. Equation (4)
shows that elastic imperfections result in coupling betweenX

�
and >

�
through k

��
and then

between>
�
and>

�
because k

��
O��. The resulting response of>

�
and>

�
also couples back to

the equations for X
�
and X

�
. Therefore, elastic anisotropy results in a complex coupling

between all four of the averaged equations of motion. The output of the gyroscope will
therefore be sensitive to variations in the elasticity of the resonator. A resonator with
natural frequencies of 15 000 and 15 001 Hz was simulated with the angular position of the
lower frequency mode varied between 0 and 903. The scale factor of the gyroscope was
determined by including a rotation rate in the model and calculating the resultant >

�
. The

zero-rate drift, >
�
, due to the frequency imperfection, was then converted to a rotation rate

in 3/s and plotted in Figure 4.



Figure 5. Zero-rate o!set of a 15 kHz resonator with a damping imperfection de"ned by two time constants of
�
��
and �

��)�
s*open loop.
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4.1.2. Damping imperfections

If one considers damping anisotropy it can be seen that the terms c
��

"c
��
appear with

the Coriolis coupling terms. Therefore, if the primary mode is excited so thatX
�
is constant,

the term c
��
causes a response in >

�
which appears as an applied rotation rate. This means

that there will be a zero-rate o!set that will be sensitive to changes in the damping
distribution of the resonator. The zero-rate o!set and response to a step input angular rate
are now

>
�
(�"0)"!(c

��
/c

��
)X

�
, >

�����
"!((c

��
#g�)X

�
/c

��
) (1!e���������). (9)

The e!ect of damping imperfections were investigated by introducing two damping time
constants of �

��
and �

��	�
s (resonator Q-factor approximately 2000). The maximum damping

axis was rotated and the zero-rate o!set calculated for the open-loop case. The zero-rate
o!set is shown in Figure 5.

4.1.3. Combined frequency and damping imperfections

Finally, the e!ect of combined elastic and damping imperfections was considered. The
zero-rate o!set, due to elastic and damping imperfections acting simultaneously, was
calculated by solving the steady state equations for di!erent combinations of damping axis
angle and frequency axis angle. This result is plotted as a surface in Figure 6. The drift
obtained by adding the drifts calculated when the imperfections act independently was
calculated and was found to be a good approximation of the drift due to the imperfections
acting simultaneously. Also plotted in Figure 6 is the error caused by this approximation.
This error can be written symbolically as

ERROR(��, ��)"Drift(��, ��)!(Drift(��)#Drift(��)).

The e!ects of the small frequency and damping imperfections considered here are therefore
almost independent of each other.



Figure 6. Zero-rate o!set due to the combined e!ects of frequency and damping imperfections*open loop.
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4.2. FORCE-TO-REBALANCE CONTROL

The e!ect of nulling the in-phase and quadrature components of the response separately
and then simultaneously was considered to gain deeper insight into the e!ects of FTR
control. The same imperfections as were considered in the open-loop case were included.

4.2.1. Frequency imperfections

Inspection of the averaged equations shows that frequency imperfections a!ect the
output of>

�
only if>

�
is non-zero.>

�
is non-zero due to the term k

��
coupling>

�
toX

�
. Also,

if >
�
is non-zero it couples back to the equation for X

�
and thus in#uences the frequency of

operation. It is therefore advantageous to null the component>
�
to eliminate this coupling.

Figure 7 shows that nulling the in-phase component eliminated the zero-rate o!set
caused by elastic imperfections, thus verifying the qualitative explanation given above.
When only the quadrature component is nulled the zero-rate o!set is not reduced from the
open-loop case. The reason for nulling the quadrature component is to increase the
bandwidth of the gyroscope.

4.2.2. Damping imperfections

The e!ect of damping imperfections was calculated in an analogous manner. The result
showed that force-to-rebalance control does not reduce the drift caused by damping
imperfections as represented in this analysis. Inspection of equation (4) shows that the
damping imperfection is indistinguishable from an applied rotation.

5. EXPERIMENTAL INVESTIGATION

The total sti!ness and damping of a resonator, and the distribution thereof, will vary with
temperature. These temperature-dependent imperfections will result in an undesirable
temperature-dependent zero-rate o!set (gyroscope output with zero rotation rate). It was
shown in section 4 that force-to-rebalance control suppresses the "rst order e!ects of



Figure 7. Suppression of the zero-rate o!set due to frequency imperfections by FTR control:**, open loop;
}} }, only quadrature component nulled; } ) }) }, only in-phase component nulled; ) ) ) ) ), force-to-rebalance control.
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sti!ness distribution variation but not the e!ect of damping distribution variations. The
relative contributions of these two imperfections is dependent on the particular resonator
and this relative contribution was investigated experimentally for a piezoelectrically sensed
and actuated vibrating cylinder resonator. Force-to-rebalance control was implemented
and the results were compared to measurements with open-loop control.

5.1. EXPERIMENTAL SET-UP

The resonator used in the experiments comprised a thin-walled, steel cylinder, closed at
one end, with eight discrete piezoelectric ceramic elements bonded near the open end [24].
Opposite pairs of ceramic elements were electrically connected and two pairs functioned as
actuators while the remaining two pairs functioned as sensors. The resonator was enclosed
in an evacuated housing to reduce acoustic radiation damping. The dynamics of the
coupled electromechanical system have been reported previously [21].
The control systems described in section 3 were implemented using a combination of

digital and analogue circuitry. In these experiments the control system was kept at room
temperature while the resonator (with pre-ampli"ers) was placed in an environmental
chamber on a rate-table. The scale factor (mV/deg/s) of the gyroscope, with a particular
control system, was measured at 203C. The zero-rate o!set of the gyroscope was then
measured as a function of temperature over a range of 0}603C, starting and "nishing at
203C. The measured voltage was converted to an equivalent rotation rate in deg/s using the
measured scale factor. In this way it was possible to compare the variations in zero-rate
o!set of the gyroscope with the di!erent control loops connected. All measurements were
conducted on the same resonator.

5.2. EXPERIMENTAL RESULTS

Measurements were performed to investigate the e!ect of force-to-rebalance control on
the temperature-induced zero-rate o!set drift. The results of these measurements are shown



Figure 8. Measured reduction of temperature-induced zero-rate o!set drift by FTR control: **, open loop;
}} }, only quadrature component nulled; } ) }) }, only in-phase component nulled; ) ) ) ) ), force-to-rebalance control.
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in Figure 8. Apart from the control system in which both components of the secondary
mode response were nulled, control systems where only one component was nulled were
also examined. The results show a dramatic decrease in the drift when the in-phase
component of the secondary mode is nulled. This result is in agreement with the theory as
by nulling the in-phase component the e!ects of elastic imperfections are suppressed. It is
evident that for the particular resonator the contribution of the temperature-dependent
frequency imperfection was an order of magnitude larger than the e!ect of all other
imperfections when operated with open-loop control. Force-to-rebalance control can
therefore dramatically improve the performance of gyroscopes based on this type of
resonator.

6. CONCLUSIONS

A system of averaged equations of motion describing the dynamics of a vibratory
gyroscope resonator were presented. These equations are very convenient for analysis of
control systems used to operate the resonator as a rotation rate sensor. The equations
prompt the form of control system required and also provide useful insight into the
qualitative e!ects of the resonator imperfections. Two control schemes were considered
namely, open-loop control and force-to-rebalance control. The e!ects of frequency and
damping imperfections were analyzed and it was shown that the force-to-rebalance control
system can eliminate the "rst order e!ects of frequency imperfections. The e!ect of damping
anisotropy is not reduced by the control systems and this is believed to be the major source
of error in the closed-loop system. Experimental measurements, of a piezoelectrically
actuated and sensed resonator, over a temperature range of 603C, showed that variation of
the zero-rate o!set was decreased by an order of magnitude by the force-to-rebalance
control. The remaining drift is believed to be primarily due to damping imperfections. The
experimental results veri"ed the theoretical predictions. It is clear that the performance of
a resonator cannot be quanti"ed from open-loop measurements alone.
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APPENDIX A: DERIVATION OF AVERAGED EQUATIONS OF MOTION

A.1. VARIATION OF PARAMETERS

The equations of motion (equation (2)) in the rapidly varying parameters x and y,

xK!g�yR #c
��
xR #c

��
yR #k

��
x#k

��
y"f

�
,

yK#g�xR #c
��
xR #c

��
yR #k

��
x#k

��
y"f

�
, (A1)

may be transformed into equations in slowly varying parameters X
�
, X

�
, >

�
and >

�
by the

transformation (equation (3))

x"X
�
sin �t#X

�
cos �t, y">

�
sin �t#>

�
cos �t. (A2)

Di!erentiation of these two transformation equations yields

xR "� (X
�
cos �t!X
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cos �t. (A3)

Because the equations have been transformed from two parameters to four parameters one
can introduce two restrictions in the new parameters [23]. The following choice of
restrictions is very advantageous:

XQ
�
sin �t#XQ
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�
cos �t"0. (A4)

With these restrictions the velocities and accelerations become
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�
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sin �t); (A5)
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The velocities and accelerations are substituted into the equations of motion to yield
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The next step is to combine these equations with the restrictions in order to get four
equations each containing only one time-derivative term. The process is illustrated for the
"rst equation.
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Multiplication of the "rst equation of motion by cos �t/� and adding the "rst restriction
multiplied by sin �t yields the equation
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Similar manipulations yield equations for XQ
�
, >Q

�
and >Q

�
.

A.2. AVERAGING

Equation (A8) shows that if the resonator is lightly damped, has small imperfections and
is subjected to small control forces, the rate of change of X

�
(XQ

�
) will be small. The same

conclusion can be drawn for XQ
�
, >Q

�
and >Q

�
. One can therefore assume that X

�
, X

�
, >

�
and

>
�
are constant over one period of oscillation. This permits one to average the equations

over one period of oscillation by applying the expressions

1

¹�



�

sin �t cos �tdt"0,
1

¹�



�

cos� �tdt"
1

¹�



�

sin� �tdt"
1

2
. (A9)

The resulting averaged equation is then
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A further three equations can be extracted in this manner giving the following system of four
"rst-order equations describing the dynamics of the resonator in the slowly varying
parameters:
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APPENDIX B: NOMENCLATURE
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elements in general damping matrix
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sin and cosine components of force applied to cos(2�) vibration pattern
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, F
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sin and cosine components of force applied to sin(2�) vibration pattern

g Coriolis coupling terms
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